As part of the solution of the ADMATEC sub-project, which is a sub-project of the CAMEB center, one of the topics is focused on stabilizers for the base layers. In addition to experienced researchers at the Faculty of Civil Engineering, Brno University of Technology, the research team also includes students of doctoral, master’s and bachelor’s degree programs. One of the student of the bachelor’s program under the professional guidance of prof. Drochytky devoted herself to the possibilities of using secondary raw materials for soil-based stabilizers. As part of her activities mainly verified products after coal combustion and construction recyclates. The results of her work then confirm that a 20% replacement of soils with secondary raw materials is clearly possible. The materials achieve parameters comparable to the original mixture and in some cases even exceed them several times.


One of the topics of the ADMATEC sub-project is focused on suspensions for earth structures. This is a unique solution of earth structures using liquefied soils, which makes appropriate use of the self-compacting effect of the suspension, which perfectly fills the excavation space and within 24 hours becomes walkable and ready for further construction work. At the same time, it reaches the parameters of the original soil and is re-excavated by classical technologies. As part of the research activities, a student of the bachelor’s study program also took part in solving partial tasks. These were mainly ashes and recyclates. The conclusions of his work confirmed that 20% replacement of soil with secondary raw material in most cases not only does not worsen the parameters of the original mixtures, but in the case of fluid ashes increases the strength of the mass several times with a significant reduction in shrinkage.


The aim of the project is the development of a virtualized environment as a tool for communication of individual participants in the design of a building. Communication in this environment will be audiovisual, ie in addition to the audiovisual presentation, it will also allow its recording. The record will then serve as a basis for editing the visualized intent.

Proven technology “Interconnection of software components of the building information model and virtual reality”

Verification of the functionality of the connection of the building information model (BIM) with the virtual reality (VR) engine (software) on the Unreal platform. Proven technology is a necessary starting step for the subsequent development of a real superstructure over this VR engine, which will enable
interactive work in a fully virtualized environment.

Unreal Engine (UE) was chosen as the basic programming environment for the proven technology of this grant, as it provides a wide range of programming options compared to other platforms. Specifically, Unity was still considered, but at the time of choosing the strategy and starting operations (01-05 / 2019) did not have the appropriate tools to view architectural BIM models and convert them to a VR-enabled engine.

Thanks to the template for collaborative views, which began to develop under the UE in 2018 and the Datasmith-software plugin for converting BIM models into the UE, it was possible to load models including metadata, ie non-geometric information of individual elements of the BIM model. Currently, the aforementioned Datasmith supports a large number of formats for CAD / BIM software, including IFC and RVT. Our goal is to develop a collaborative tool for BIM models, created on the Autodesk Revit platform for its widest use on the market for collaboration between professions involved in building a BIM model. Within the proven technology, the activity was focused on the issue of information transfer between the RVT model and the UE, where the goal is to transfer not only geometry, but especially metadata.

Software tool for audiovisual communication in a virtual environment

A tool for the use of virtual reality as a means of communication during the design of a building. The communication will be audiovisual, ie in addition to the audiovisual presentation, it will also enable its recording. The record will then serve as a basis for editing the visualized intent. The  information model of the building will be the input data that will be virtualized.

The project is developing a software tool that allows you to share your stay in a virtual environment, to which users connect from multiple computers and platforms. Within one “world”, users accessing from the desktop PC / Mac environment as well as users using VR technology can cooperate with each other. Within this world, users can move either by virtual walking or by virtual teleport. In this virtual world, there is a building model (s) that carry metadata obtained from Revit architectural software. This information is readable to the user by the user marking the element. Selected elements can be moved by the user for a better idea of ​​possible modifications.

Professional book The use of virtual reality in the design of buildings

A professional book describing the use of virtual reality during the complete process of building design, including testing its functionality and safety. The publication will focus on issues of building representation in a virtual environment, design planning, work coordination and analysis
design safety for users.





On  October, 1 and 2, 2020, under the auspices of the expert group “Drainage of urbanized areas CZWA” and the Research Center AdMaS, firm ARDEC organized already XX. year of the URBAN WATER CONFERENCE 2020 in Velké Bílovice . The media partner of the conference was stavební, the magazine Vodní hospodářství and the internet portal Vodovod info. The main partner of the conference was the company PREFA Brno a.s.

The URBAN WATER 2020 CONFERENCE has traditionally maintained a high level of presentations. The conference program was divided into 3 blocks. A total of 24 lectures were presented. Due to the difficult situation with COVID19, a number of delegates excused from conference, often at the last minute. Therefore it was decided that the lectures would be broadcast live using Microsoft TEAMS and that selected lecturers would also be allowed to deliver their lectures online.

The first day of the conference ended with a social evening in the riding hall of the state chateau Lednice. The event attended about 70 delegates which led informal discussions and gained personal contacts. Cimbalom music was played for listening, Moravian wines from top wineries and rich refreshments were prepared for the participants. The social evening was, despite the strict adherence to all currently valid measures and restrictions associated with Covid 19, very positively evaluated by the participants.

The twentieth year of the conference confirmed that the URBAN WATER CONFERENCE maintained the favor of participants despite the difficult situation, as about 100 delegates from research institutes and universities, design and supply companies, sewer operators and municipal councils, etc attended. Other participants had an opportunity to watch the online broadcast of lectures.

Preparations  of the XXI. URBAN WATER CONFERENCE, which will take place on October 7 and 8, 2021, have already started. Conference will traditionally focus on water management in 2021, water resources, ensuring the need for water from alternative sources, the concept of urban drainage solutions, urban watercourses, flood protection in relation to urban drainage, progressive technologies of wastewater treatment, technological WWTP processes and experience from the implementation of urban drainage constructions. A special section will also be devoted to contributions related to the COVID 19 pandemic.



At present, sewerage networks for municipal and industrial wastewater are standardly built using single-skin pipes, even in environmentally or otherwise exposed localities with increased risk. As a rule, on-line inspection of the tightness of the pipe jacket on these sewer networks is not performed and required, and therefore the identification of the fault at the time of its occurrence is not ensured. In these areas with an increased risk, the possible contamination of soil and groundwater is not prevented, as well as the operative elimination of any defects that have not been ensured.

The goal of online monitoring carried out in the AdMaS center in cooperation with Satturn HoleSov and the Department of Telecommunications at the Faculty of Electrical Engineering and Communication is therefore the most detailed coverage of the sewer network for leak localization, while high measurement accuracy is not required. These assumptions predetermine the possibility of using “cheap sensors”, which do not necessarily accurately measure the measured quantities. It is sufficient if they can capture with sufficient accuracy the “changes” caused by the creation of a leak. Sophisticated applications using optical cable using Raman scattering in optical fiber also seem to be suitable.





From 16 to 17 September 2020, Transport Infrastructure Conference was held in the castle brewery of the town of Litomyšl, which was attended by 21 exhibitors with 470 delegates this year.

Director of the Center, Asoc. Prof. Zdenek Dufek, gave one of a total of 51 lectures during the main program. He was accompanied  by 3 other colleagues who represented the research and activities of the AdMaS Center and FCE as a whole in the exhibition stand and established new contacts for possible future cooperation.

The ongoing solution of the REVOZIM project – Recycling of water and waste within the green infrastructure of cities shows that even sewage sludge can have an interesting use


The joint efforts of young scientists from the AdMaS research center, together with young researchers from the UCEEB center, led to the installation and revitalization of a functional unit for testing green roof compositions during the summer months. Although this summer’s precipitation was above average, the project activities are focused on “combating drought” and measures for appropriate water management in urban areas.
A partial goal of the project is to apply the possibility of using the so-called gray water (little polluted water from bathrooms, kitchens, laundry, etc.), which is after treatment as so-called white water suitable for irrigation, flushing toilets and other technological purposes. The AdMaS center operates fully instrumented models of green roofs irrigated with the above-mentioned gray, resp. white water, which are partly formed by a substrate of recycled building materials and materially transformed sewage sludge by microwave torrefaction into the form of a solid carbonaceous product (so-called “biochar”).
During testing, the quality and quantity of the inlet and outlet gray (white) water and the quality of the fitted green carpet are monitored. Already a visual comparison of two models of green roofs shows that the model where a substrate containing biochar is used generally shows better vegetation quality (color, density, etc.) and clearly significantly more efficient management of the entire composition of the green roof with watering.


The cooperation of individual AdMaS institutes with various workplaces in our state often very far from the construction industry, is very extensive. Archaeologists turned to the Center for Radiation Defectoscopy,a part of the Institute of Building testing with a very interesting problem. Thanks to fair treasure hunters, armed with suitable detectors, a sword was discovered near Znojmo, the origin of which is approximately estimated for the Iron Age, resp. for the Roman period. The sword was professionally picked up, but the high degree of corrosion does not allow its thorough cleaning, which could damage it or to remove important details. The sword was therefore imported to AdMaS and in the following period will be a subject to an X-ray inspection under the lead of Prof. Leonard Hobst,which should reveal the exact shape of the sword, details of production and possible decoration and the extent of corrosion damage. On the basis of this radiographic survey, archaeologists will subsequently decide on the further procedure and possible remediation of this important archaeological find.


On 10 June 2020, employees of the project department of the Ministry of Education, Sports and Youth visited the AdMaS Center to evaluate the now completed five-year project AdMaS UP – Advanced Building Materials, Structures and Technologies, lasting from 1 January 2015 to 31 December 2019 and whose solver was prof. Ing. Drahomir Novak, DrSc.

The Board of Opponents stated that the individual research groups and divisions of the AdMaS Up project met and significantly exceeded the Threshold Conditions of the NPU I program. Furthermore, I quote: “ The project mobilized human resources in both basic and applied research. During its solution, there was a significant increase in the volume of contract research. The number of publications in journals with an impact factor increased significantly and the trend of publishing in quality journals (Q1, Q2) was also started. During the solution of the project, the submission and implementation of research projects, mobile activities and projects of cooperation with industry was very successfully stimulated. ”

The Board also praised the drawing of funds: “The recognized costs were used efficiently and effectively. The approved budget was adhered to within the limits set by the provider. Transfers within budget chapters were not significant, the only significant difference was the increase in co-financing from non-public funds, to the level of 130% compared to the originally approved project proposal. The change demonstrates the economic health of the beneficiary and is also reflected in a significant excess of most indicators of individual types of results. ”

In conclusion, the Council praised in particular the number of cooperation projects with the application sphere and the number of mobilities, as well as international projects, and overall assessed the project as excellent.


In addition to other activities, young scientists specializing in water management have a lot of work to do with several scientific research projects funded by the TACR – Zeta program.

Also thanks to the extraordinary technological background offered by the AdMaS center and the support of the above-mentioned program, a number of testing and verification of technologies focused on the use of wastewater potential (energy or technological) are now underway, as well as selected accompanying laboratory analyzes.

In connection with the urgent verification of possibilities and measures that respond to the current dry season, the area of ​​using the potential of so-called gray waters is very promising. This is also due to the fact that the use of gray waters has not yet been regulated in the Czech Republic.

AdMaSe is currently testing a technological unit for obtaining thermal energy from gray wastewater in combination with their treatment for further use – in buildings, for technological purposes, watering green roofs and facades, etc. This technology for recycling gray wastewater, which is solved in the project TJ02000190 (Collection and use of thermal energy from wastewater in combination with the use of treated water), is a highly topical issue, due to the prevailing dry climatic conditions and the need for careful water management.

Another tested technology is a functional sample of a thermal pyrolysis unit, within the project TJ02000262 (Processing of gastro waste into a solid carbonaceous product for material use). After processing the dried gastro waste by thermal pyrolysis technology, the resulting product is the so-called biochar – a solid carbonaceous product, which will first be subjected to characterization with the assumption of its subsequent certification for use as a fertilizer, possibly auxiliaries. This pyrolysis unit is placed in a container, thanks to which it is possible in the future to place it near the source of gastro waste and process it directly at the source.



The current pandemic has brought together fans of 3D printing worldwide, who immediately responded to the demand for equipment, especially for healthcare professionals. However, the most commonly available 3D printing using FDM technology has its limitations, for example in terms of the possibility of disinfection. The solution could be a unique metal coating in this area, on which is working Assoc. Prof. Jan Podrouzek from the Faculty of Civil Engineering, BUT  in cooperation with the St. Anne’s  Hospital.

Currently, experts from the Faculty of Civil Engineering are testing the application of antimicrobial coatings on the outside of a face mask adapter made by 3D printing in the LAB machine at FME BUT and on door handles in cooperation with an industrial partner.

“Prints with the most available FDM or FFF technology are characterized by articulation and porosity, which is created by layering the material,” points out the specific properties of this type of 3D printing Jan Podrouzek. According to him, the technology is great at a time when it is necessary to respond quickly to specific requirements. It was then, he said, that coating technology could be used to improve the properties of the prints. Considered materials include, for example, oxides of copper, silver or alpaca. These technologies cost tens of millions, but the treatment of one component, for example, costs ten crowns due to the amount.

Some microorganisms can stay out of the host for a relatively long time (up to several days) and this is an important parameter when considering the rate of spread of the disease. From the point of view of spread control, therefore, apart from droplet transfer, the fundamental question of the ability of microorganisms to remain in a viable state on exposed surfaces is crucial. In the case of viruses, it is probably a matter of the interaction of material with proteins on the surface of the virus particle, but in general it is a question of controlling the surface roughness and the associated ability of microbes to survive and the effectiveness of disinfection. This is essential, for example, for the now mass-printed reductions in diving masks, which are mainly worn by paramedics, even for several hours a day. “These coatings can form a protective layer on objects that are exposed to direct, even accidental, contact with the human hand. Applying a thin protective layer cannot only reduce the risk of contamination and subsequent spread of microorganisms such as COVID-19, but also improve a number of useful properties in general, whether it is 3D printer prints or conventional injection molded plastics, “names the common use of coating Podrouzek, among others researcher of the AdMaS Center.

However, due to the possible toxicity of the materials used, it is necessary to carefully examine the possible negative effects on human health. In addition to the research of antimicrobial abilities, which will take place at the St. Anne’s Hospital, the samples will also be examined by experts in the laboratory of the Department of Physical Electronics at the Faculty of Science of Masaryk University under the leadership of Petr Vasina. There, they will focus on the durability of antimicrobial surfaces and will observe the extent to which the metal wears under mechanical and chemical stress, for example by disinfection in a hospital environment.